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White matter hyperintensities (WMH) appear as regions of abnormally high signal intensity

on T2-weighted magnetic resonance image (MRI) sequences. In particular, WMH have

been noteworthy in age-related neuroscience for being a crucial biomarker for all types of

dementia and brain aging processes. The automatic WMH segmentation is challenging

because of their variable intensity range, size and shape. U-Net tackles this problem

through the dense prediction and has shown competitive performances not only on

WMH segmentation/detection but also on varied image segmentation tasks. However,

its network architecture is high complex. In this study, we propose the use of Saliency

U-Net and Irregularity map (IAM) to decrease the U-Net architectural complexity without

performance loss. We trained Saliency U-Net using both: a T2-FLAIR MRI sequence

and its correspondent IAM. Since IAM guides locating image intensity irregularities, in

which WMH are possibly included, in the MRI slice, Saliency U-Net performs better than

the original U-Net trained only using T2-FLAIR. The best performance was achieved

with fewer parameters and shorter training time. Moreover, the application of dilated

convolution enhanced Saliency U-Net by recognizing the shape of large WMH more

accurately through multi-context learning. This network named Dilated Saliency U-Net

improved Dice coefficient score to 0.5588 which was the best score among our

experimental models, and recorded a relatively good sensitivity of 0.4747 with the

shortest training time and the least number of parameters. In conclusion, based on

our experimental results, incorporating IAM through Dilated Saliency U-Net resulted an

appropriate approach for WMH segmentation.

Keywords: white matter hyperintensities, irregularity age map, saliency U-Net, MRI, segmentation, dilated

convolution, deep learning

1. INTRODUCTION

White matter hyperintensities (WMH) are commonly identified as signal abnormalities with
intensities higher than other normal regions on the T2-FLAIR magnetic resonance imaging (MRI)
sequence. WMH have clinical importance in the study and monitoring of Alzheimer’s disease (AD)
and dementia progression (Gootjes et al., 2004). Higher volume of WMH has been found in brains
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of AD patients compared to age-matched controls, and the
degree of WMH has been reported more severe for senile onset
AD patients than presenile onset AD patients (Scheltens et al.,
1992). Furthermore, WMH volume generally increases with the
advance of age (Jagust et al., 2008; Raz et al., 2012). Due to
their clinical importance, various machine learning approaches
have been implemented for the automatic WMH segmentation
(Admiraal-Behloul et al., 2005; Bowles et al., 2017).

Limited One-Time Sampling Irregularity Map (LOTS-IM) is
an unsupervised algorithm for detecting tissue irregularities, that
successfully has been applied for segmenting WMH on brain T2-
FLAIR images (Rachmadi et al., 2019).Without any ground-truth
segmentation, this algorithm produces a map which describes
how much each voxel is irregular compared with an overall area.
This map is usually called “irregularity map” (IM) or “irregularity
age map” (IAM). The concept of this map was firstly suggested in
the field of computer graphics to calculate pixel-wise “age" values
indicating howweathered/damaged each pixel is compared to the
overall texture pattern of an image (Bellini et al., 2016). Rachmadi
et al. (2019) then proposed a similar approach to calculate
the irregularity level of WMH with respect to the “normal"
tissue in T2-FLAIR brain MRI (Rachmadi et al., 2017, 2018b).
As WMH highlight irregular intensities on T2-FLAIR MRI
slices, IAM can be also used for WMH segmentation. Although
performing better than some conventional machine learning
algorithms, LOTS-IM still underperforms compared to state-
of-the-art deep neural networks. This is mainly because IAM
essentially indicates irregular regions, including artifacts, other
pathological features and some gray matter regions, in addition
to WMH. However, considering IAM depicts irregularities quite
accurately and can be generated without a training process, we
propose to use IAM as an auxiliary guidance map of WMH
location for WMH segmentation.

Recently, the introduction of deep neural networks, the state-
of-art machine learning approach, has remarkably increased
performances of image segmentation and object detection
tasks. Deep neural networks outperform conventional machine
learning approaches in bio-medical imaging tasks as well as
general image processing. For example, Ciresan et al. (2012) built
a pixel-wise classification scheme that uses deep neural networks
to identify neuronal membranes on electron microscope (EM)
images (Ciresan et al., 2012). In another study, Ronneberger
et al. proposed a new deep neural network architecture called
U-Net for segmenting neuronal structures on EM images
(Ronneberger et al., 2015).

In medical images’ segmentation tasks, U-Net architecture
and its modified versions have been massively popular due to
the end-to-end segmentation architecture and high performance.
For instance, a U-Net-based fully convolutional network was
proposed to automatically detect and segment brain tumors
using multi-modal MRI data (Dong et al., 2017). A 3D U-
Net for segmenting the kidney structure in volumetric images
produced good quality 3D segmentation results (Çiçek et al.,
2016). UResNet, which is a combination of U-Net and a residual
network, was proposed to differentiateWMH from stroke lesions
(Guerrero et al., 2018). Zhang Y. et al. (2018) trained a randomly
initialized U-Net for WMH segmentation and improved the

segmentation accuracy by post-processing the network’s results
(Zhang Y. et al., 2018).

While there have been many studies showing that U-Net
performs well in image segmentation, it has one shortcoming
that is long training time due to its high complexity (Briot
et al., 2018; Zhang C. et al., 2018). To ameliorate this problem,
Karargyros et al. suggested the application of regional maps as
an additional input, for segmenting anomalies on CT images,
and named their architecture Saliency U-Net (Karargyros and
Syeda-Mahmood, 2018). They pointed out that extraction of
relevant features from images unnecessarily demands very
complex deep neural network architectures. Thus, despite neural
networks architecture with large number of layers being able
to extract more appropriate features from raw image data, it
often accompanies a long training time and causes overfitting.
Saliency U-Net has regional maps and raw images as inputs,
and separately learns features from each data. The additional
features from regional maps add spatial information to the
U-Net, which successful delineates anomalies better than the
original U-Net with less number of parameters (Karargyros and
Syeda-Mahmood, 2018).

Another way to improve the segmentation performance
of deep neural networks is through the recognition of the
multi-scale context image information. Multi-scale learning is
important particularly for detection/segmentation of objects
with variable sizes and shapes. A dilated convolution layer
was proposed to make deep neural networks learn multi-scale
context better (Yu et al., 2017). Using dilated convolution
layers, an architecture can learn larger receptive fields without
significant increase in the number of parameters. Previous studies
have reported improvements using dilated convolution layers
in medical image processing tasks (Lopez and Ventura, 2017;
Moeskops et al., 2017).

In this paper, we propose to use IAM as an additional
input data to train a U-Net neural network architecture for
WMH segmentation, owed to the fact that LOTS-IM can
easily produce IAM without the need for training using
manually marked WMH ground-truth data. U-Net architecture
is selected as a base model for our experiments as it has
shown the best learning performance using IAM (Rachmadi
et al., 2018a). To address the incorporation of IAM to U-
Net for WMH segmentation, we propose feed-forwarding IAM
as regional map to a Saliency U-Net architecture. We also
propose combining Saliency U-Net with dilated convolution
to learn multi-scale context from both T2-FLAIR MRI and
IAM data, in a scheme we name Dilated Saliency U-Net.
We compare the original U-Net’s performance with the
performances of Saliency U-Net and Dilated Saliency U-Net on
WMH segmentation.

Consequently, the contributions of our work can be
summarized as follows:

• Proposing the use of IAM as an auxiliary input for WMH
segmentation. T2-FLAIR MRI and IAM complement each
other when they both are used as input to the neural
network, addressing challenging cases especially those with
few small WMH.
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• Integration of Saliency U-Net and dilated convolution for
WMH segmentation; which showed more detailed boundary
delineation of large WMH. It also attained the best Dice
coefficient score compared to our other experimental models.

2. MATERIALS AND METHODS

2.1. Dataset
MRI can produce different types of images to display normal
tissues and different types of clinical abnormalities. It is desirable
to choose suitable image types considering the properties of
biomarkers or diseases targeted in the segmentation task. T2-
weighted is one of the MRI sequences that emphasizes fluids
as bright intensities. The bright intensity of fluids makes WMH
difficult to identify in this MRI modality because WMH are also
bright on T2-weighted. T2-fluid attenuated inversion recovery
(T2-FLAIR) removes cerebrospinal fluid (CSF) signal from the
T2-weighted sequence, increasing the contrast between WMH
and other brain tissues. Therefore, we have chosen T2-FLAIR
MRI as the main source of image data for our experiments.

We obtained T2-FLAIR MRI sequences from the public
dataset the Alzheimer’s Disease Neuroimaging Initiative (ADNI)1

which was initially launched by Mueller et al. (2005). This
study has mainly aimed to examine combinations of biomarkers,
MRI sequences, positron emission tomography (PET) and
clinical-neuropsychological assessments in order to diagnose the
progression of mild cognitive impairment (MCI) and early AD.
From the whole ADNI database, we randomly selected 60 MRI
scans collected for three consecutive years from 20 subjects with
different degrees of cognitive impairment in order to evaluate the
applicability of our proposed scheme not only for cross-sectional
studies but also for longitudinal analyses of WMH. Each MRI
scan has dimensions of 256 × 256 × 35. We describe how train
and test dataset are composed in section 2.8.

Ground truth masks were semi-automatically produced by
an experienced image analyst using a thresholding algorithm
combined with region-growing in the Object Extractor tool of
AnalyzeTM software. This semi-automatic WMH segmentation
used the T2-FLAIR images. Intracranial volume (ICV) and CSF
masks were generated automatically using optiBET (Lutkenhoff
et al., 2014), and a multispectral algorithm developed in-house
(Hernández et al., 2015), respectively. Full details and binary
WMH reference masks can be downloaded from the University
of Edinburgh DataShare repository2.

2.2. Irregularity Age Map (IAM)
As described in section 1, the concept of IAM was proposed with
the development of the LOTS-IM algorithm and its application
to the task of WMH segmentation (Rachmadi et al., 2017, 2018b,
2019). This algorithm was inspired by the concept of “age map”

1Data used in preparation of this article were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the
investigators within the ADNI contributed to the design and implementation of
ADNI and/or provided data but did not participate in analysis or writing of this
report. A complete listing of ADNI investigators can be found at: http://adni.loni.
usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
2https://datashare.is.ed.ac.uk/handle/10283/2214

proposed by Bellini et al. while calculating the level of weathering
or damage of pixels compared to the overall texture pattern on
natural images (Bellini et al., 2016). Rachmadi et al. adopted this
principle to compute the degree of irregularity in brain tissue
from T2-FLAIR MRI.

In this study, the GPU-powered LOTS-IM algorithm
(Rachmadi et al., 2019)3 was used to generate IAM from all
scans. The steps of the LOTS-IM algorithm are as follows. Source
and target patches are extracted from the MRI slices with four
different sizes (i.e., 1 × 1, 2 × 2, 4 × 4, and 8 × 8) to capture
different details in the brain tissues (Rachmadi et al., 2017). All
grid fragments consisting of n × n sized patches are regarded
as source patches. On the other hand, target patches are picked
at random locations within the brain. Thus, non-brain target
patches, located within the CSF mask or outside the ICV mask,
are excluded from computation. Then, the difference between
each source patch and one target patch on the same slice is
calculated by Equation 1;

difference = θ · |max(s− t)| + (1− θ) · |mean(s− t)| (1)

where s and t mean source patch and target patch, respectively,
also θ was set to 0.5 (Rachmadi et al., 2018b). After difference
values between a source patch and all target patches are
calculated, the 100 largest difference values are averaged to
become the age value of the corresponding source patch
(Rachmadi et al., 2017). The rationale is that the average of
the 100 largest difference values produced by an “irregular”
source patch is still comparably higher than the one produced
by a “normal” source patch (Rachmadi et al., 2017, 2018b).
Furthermore, the age value is computed only for source patches
within the brain to reduce the computational complexity. All age
maps from four different patch sizes are, then, normalized to have
normalized age values between 0 and 1; and each of them is up-
sampled into its original image size and smoothed by a Gaussian
filter. The final age map is produced by blending these four age
maps using the Equation 2;

Final age map = α · AM1 + β · AM2 + γ · AM4 + δ · AM8 (2)

where AMx means the age map of x × x sized patches and
α + β + γ + δ = 1. In this study, α = 0.65, β = 0.2,
γ = 0.1 and δ = 0.05 (Rachmadi et al., 2019). Finally, the final
age map is penalized bymultiplying the original T2-FLAIR image
slice to reflect only the high intensities of WMH, and globally
normalized from 0 to 1 over all brain slices. The overall steps are
schematically illustrated in Figure 1.

Though regarded as WMH segmentation map in the original
studies, IAM essentially calculates the probability of each voxel
to constitute an irregularity of the “normal" tissue. This irregular
pattern includes not only WMH but more features such as
artifacts, T2-FLAIR hyperintensities of other nature, as well as
sections of the cortex that could be hyperintense. To compensate
these flaws and take advantage of its usefulness, we developed
a new scheme that uses IAM as an auxiliary guidance map for
training deep neural networks rather than using it for producing
the final WMH segmentation.

3https://github.com/febrianrachmadi/lots-iam-gpu
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FIGURE 1 | Flow chart illustrating the LOTS-IM algorithm proposed by Rachmadi et al. (2019) applied to WMH segmentation. This study uses the final map generated

by this algorithm, and refers to it as “IAM data”.

2.3. U-Net
Since U-Net architecture was firstly presented (Ronneberger
et al., 2015), various image segmentation studies have used
this architecture due to its competitive performance regardless
of the targeted object types. Different to the natural image
segmentation, bio-medical image segmentation involves a more
challenging circumstance as lack of data for the training process
is a common problem. U-Net deals with this challenge with
dense prediction of the input image using up-sampling layers that
produce equal-sized input and output. This approach was drew
by fully convolutional networks (Long et al., 2015).

U-Net is comprised of two parts, the encoding part where
feature maps are down-sampled by max-pooling layers and the
decoding part where the reduced size of feature maps are up-
sampled to the original size. It retains the localization accuracy
with the contracting path, which concatenates the feature maps
stored in the encoding part with the decoding part. These kept
high resolution features help to restore the details of localization
removed by max-pooling layer, when the feature maps are up-
sampled in the decoding part. The architecture is depicted
in Figure 3A.

A drawback of U-Net is its large number of parameters.
To restore the high resolution localization, the network should

increase the number of feature channels in the decoding part.
Training time andmemory usage are proportional to the number
of parameters. So training a U-Net architecture is constrained
by its high consumption of time and memory. Moreover, the
complexity of the (neural) network often induces the problem
of overfitting.

2.4. Saliency U-Net
Saliency U-Net was first introduced to detect anomalies in
medical images using a combination of raw (medical) images
and simple regional maps (Karargyros and Syeda-Mahmood,
2018). Saliency U-Net performed better than U-Net while using
less number of parameters. An architecture with less number of
parameters is preferable as it is easier and faster to be trained.
Karargyros and Syeda-Mahmood showed that convolution layers
are not needed to extract more relevant features from raw images
if auxiliary information from regional map is given as input. The
Saliency U-Net architecture has two branches of layers in the
encoding part (Figure 3B). Each branch extracts features from
raw image and regional map independently, and the extracted
features are fused before the decoding part.

Segmentation results from Saliency U-Net in the original
study (Karargyros and Syeda-Mahmood, 2018) showed more
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precise localization and better performance than the original U-
Net, which contained a larger number of convolutional layers.
Therefore, for WMH segmentation, we propose to use Saliency
U-Net taking T2-FLAIR as raw input image and IAM as
regional map.

2.5. Dilated Convolution
One common issue for image segmentation via deep neural
networks is caused by the reduced size of the feature maps
in the pooling layer introduced to capture global contextual
information. While pooling layers are useful to get rid of some
redundancies in feature maps, the lower size of feature maps after
the last pooling layer also causes loses of some of its original
details/information, decreasing the segmentation performance
where the targeted regions are not spatially prevalent (Yu et al.,
2017; Hamaguchi et al., 2018).

Dilated convolution solved this problem by calculating a
convolution over a larger region without reducing the resolution
(Yu and Koltun, 2015). The dilated convolution layer enlarges a
receptive field including k skips between each input pixel. k is
called dilation factor. In numerical form, a dilated convolution
layer with a dilation factor k and a n × n filter is formulated
as follows:

F(r, c) =
i=n∑

i=−n

j=n∑

j=−n

W(i, j)I(r + ki, c+ kj) (3)

Figures 2A–C show examples of dilated convolution filters with
dilation factors 1 to 3.

The additional advantage of dilated convolution is to widen
the receptive field without increasing the number of parameters.
Large receptive fields learn the global context by covering a wider
area over the input feature map, but bring a memory leak and
time consumption out for a growing number of parameters.
Dilation can expand the receptive field of the convolution layer as
much as skipped pixels without extra parameters. For instance, as
shown in Figures 2A,C, the filter with dilation factor 3 has 7× 7
sized receptive field, while the filter with dilation factor 1 has 3×3
sized receptive field.

In this study, we propose the incorporation of dilated
convolution to Saliency U-Net forWMH segmentation. Since the
size ofWMH is variable, it is necessary to recognize different sizes
of spatial contexts for more accurate delineation of WMH. We
believe that dilated convolutions can manage the variable size of
WMH from different sizes of receptive field.

2.6. Our Experimental Models
We examined three different U-Net models for which its
original architecture was trained using input data with different
modalities: T2-FLAIR (model 1), IAM (model 2), and both
(model 3). To feed both T2-FLAIR and IAM together, we
integrated T2-FLAIR and IAM as a two-channel input. As
mentioned in section 2.3, U-Net architecture has encoding and
decoding parts. In the encoding part, input images or feature
maps are down-sampled bymax-pooling layers to obtain relevant
features for WMH segmentation. Then, in the decoding part,
reduced feature maps are up-sampled again by up-sampling

layers to acquire the original size in the final segmentation
map. Max-pooling and Up-sampling layers are followed by two
CONV blocks (yellow blocks in Figure 3). The CONV block
contains a convolution layer, an activation layer and a batch
normalization layer. Batch normalization allows to train neural
networks with less careful initialization and higher learning rate
by performing normalization at every batch (Ioffe and Szegedy,
2015). All activation layers except the last one are ReLU (Nair
and Hinton, 2010), but the last activation layer calculates the
categorical cross-entropy to yield a probabilitymap for each label.

In addition, we trained Saliency U-Net and Dilated Saliency
U-Net by feed forwarding both T2-FLAIR and IAM separately.
In this way, we assume that IAM works as a simple regional
map which provides localization information of WMH rather
than just being a different image channel. While the U-Net
architecture has one branch of the encoding part, Saliency U-
Net encoding part consists of two branches that learn raw images
and regional maps individually. Furthermore, we applied dilation
factors of 1, 2, 4 and 2 to the first four convolutional layers
of Saliency U-Net to form the Dilated Saliency U-Net. The
architectures of U-Net, Saliency U-Net and Dilated Saliency
U-Net can be seen in Figure 3.

Performance of these models are compared to each other in
section 3.We additionally conducted experiments on the original
U-Net models trained only with T2-FLAIR and only with IAM in
order to see how using both T2-FLAIR and IAM as inputs affects
learning WMH segmentation. Our five experimental models are
listed in Table 1.

2.7. Preprocessing
In machine learning, data preprocessing is needed to standardize
the data into a comparable range. It is especially important when
we deal with MRI data whose intensity is not in a fixed range.
Differences in the intensity range are caused by differences in
MRI acquisition protocols, scanner models, calibration settings,
etc. (Shah et al., 2011).

For this reason, we normalized the intensity of the brain
tissue voxels in our train and test data. The image intensity
of the majority of non-brain tissue voxels of an MRI slice is
zero or near-zero, although few non-brain voxels can have peak
intensity values above the intensity range of the brain tissue.
Thus, normalizing intensities from all voxels together can bias
the intensity values toward zero and reduce the effect of WMH
on brain tissue voxels. Brain tissue voxels were filtered using CSF
and the intracranial volume (ICV) masks as follows:

Brain Tissue Region = MRI scan ∩ (¬CSF ∩ ICV ) (4)

We normalized the brain tissue voxels on each slice into a
distribution with zero-mean and unit variance by subtracting the
mean value from each voxel value and dividing the result by the
standard deviation.

Although WMH segmentation can be regarded as the binary
classification of voxels, we re-labeled the ground-truth data
assigning voxels one of the three following labels: non-brain,
non-WMH brain tissue and WMH. However, when evaluating
the segmentation results, we considered both non-brain and
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FIGURE 2 | Examples of dilated convolution filter with 3× 3 size. (A) Dilation factor = 1, (B) Dilation factor = 2 and (C) Dilation factor = 3.

FIGURE 3 | Architecture of three different networks used in this study. (A) the original U-Net, (B) Saliency U-Net, and (C) Dilated Saliency U-Net. Three numbers of

CONV block (yellow block) represents filter size× filter size× filter channels. For the Dilated Saliency U-Net model, red numbers mean a dilation factor for the

convolution layer in each CONV block.
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TABLE 1 | Dice Similarity Coefficient (DSC), sensitivity, positive predictive value

(PPV), training time and number of parameters for our five experimental models.

Model DSC Sensitivity PPV Training time # Parameters

U-Net(FLAIR) 0.5440 0.4594 0.6275 1 h 52 m 55 s 7,859,715

U-Net(IAM) 0.5274 0.4179 0.6769 1 h 53 m 52 s 7,859,715

U-Net(F+I) 0.5281 0.4902 0.6268 1 h 24 m 22 s 7,861,315

Saliency

U-Net(F+I)

0.5535 0.4730 0.6034 1 h 30 m 1 s 2,756,803

Dilated Saliency

U-Net(F+I)

0.5588 0.4747 0.6374 1 h 4 m 18 s 2,623,683

Values in bold are the highest scores and in italic the second highest. In the brackets after

the model names, the input data type is specified. “FLAIR” is equivalent to T2-FLAIR and

“F+I” refers to taking both T2-FLAIR and IAM as input.

non-WMH brain tissue labels as non-WMH labels to calculate
sensitivity and Dice similarity coefficient which are metrics
for the binary classification. Figure 4 shows the example of
a T2-FLAIR slice, the same slice after preprocessing and
normalization, and the ground-truth slice.

2.8. Training and Testing Setup
For training, 30 MRI scans of the ADNI dataset described in
section 2.1 were randomly selected. These 30 MRI scans were
collected from 10 subjects for three consecutive years. We trained
our networks with image patches generated from these MRI
scans, not slices, to increase the amount of training data. If we
train our models using slice images, the amount of training data
is only 35 × 30 = 1050 slices, which is not ideal for training a
deep neural network architecture. Instead, by extracting 64 × 64
sized patches from each image slice, we could have 30,000 patches
for training data.

For testing, we used the rest 30 scans of the ADNI sample,
which are not used during training. These scans were also
obtained from another 10 subjects for three consecutive years.
The testing dataset was comprised of image slices without patch
extraction. Slice image data is necessary to analyse the results
from our models according to the distributions or volumes of
WMH. Our testing dataset holds 1050 of 256 × 256 image slices
in total as each scan contains 35 slices.

All experimental models were trained using the same network
configuration. We set learning rate to 1e−5 and batch size to 16.
As an optimization method, we selected the Adam optimization
algorithm (Kingma and Ba, 2014), although the original U-Net
scheme used the stochastic gradient descent (SGD) optimizer.
This is because the Adam optimizer can handle sparse gradients.
It is highly possible that our training data produce sparse
gradients as non-brain voxels, which are the majority, have
zero intensity. We applied the Adam optimizer accordingly,
considering this data property.

3. RESULTS

In this section, we present how experiments were conducted, and
analyse and compare the experimental results.

3.1. Evaluation Metrics
We use sensitivity, positive predictive value (PPV) and Dice
similarity coefficient (DSC) to evaluate the models. Sensitivity

measures the rate of true positives as below:

Sensitivity =
TP

TP + FN
(5)

where TPmeans true positive, and FN means false negative. PPV
also measures the rate of true positives but from the total of
positive calls like below:

PPV =
TP

TP + FP
(6)

where FP refers to false positive. DSC is a statistic method to
compare the similarity between two samples of discrete values
(Dice, 1945). It is one of the most common evaluation metrics
in image segmentation. The formula is as follow:

DSC =
2TP

2TP + FP + FN
(7)

where TP and FN are as per Equation 5 and FP means false
positive. DSC is interpreted as the overlapping ratio to the
whole area of prediction and target objects, while sensitivity
measures the correctly predicted region of the target object. If
the prediction includes not only true positives but also wrong
segmentation results (false positives), the DSC score can be low
despite the high sensitivity.

3.2. The Effects of IAM as an Auxiliary Input
Data
Table 1 shows overall performances of our five experimental
models. The adoption of IAM as an auxiliary input data for
U-Net [i.e., U-Net(F+I)] improved sensitivity to 0.4902 but
had lower DSC score than the model that used only the T2-
FLAIR image as input. On the other hand, Saliency U-Net(F+I)
improved the DSC scores achieved by U-Net to 0.5535 while
Dilated Saliency U-Net(F+I) achieved the best DSC score of
0.5588. Dilated Saliency U-Net(F+I) yielded the second best
sensitivity rate after U-Net trained with T2-FLAIR and IAM
[i.e., U-Net(F+I)]. U-Net(IAM) achieved the best PPV value
of our five models and Dilated Saliency U-Net(F+I) achieved
the second highest value of PPV. From these results, we
can see that the three models trained with T2-FLAIR and
IAM particularly increased the sensitivity performance of the
network architectures.

Saliency and Dilated Saliency U-Net included considerably
less parameters than the three U-Net models. As
shown in Table 1, Saliency and Dilated Saliency U-
Net have more than three times less parameters and
slightly shorter training time than the original U-
Net while having better if not similar performance on
WMH segmentation.

With regards to training time, although feeding both T2-
FLAIR and IAM together into U-Net involved the calculation
of more parameters due to the two-channel input, the training
time for this model was shorter than that of U-Net(FLAIR) and
U-Net(IAM). In deep learning studies, visual attention, which
gives larger weight on the region of interest, speeds up learning
by leading the model to concentrate on the relevant regions.
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This has been experimentally demonstrated in previous studies
(Choi et al., 2017; Najibi et al., 2018). In our case, IAM confers
the visual attention effect to the network architecture. Despite
having fewer parameters, Saliency U-Net took longer time
to train than U-Net(F+I). Feed-forward and back-propagation
proceed separately in each encoding part. Dilated Saliency U-
Net significantly decreased the training time compared to the
other models by skipping voxels that reduce the computational
complexity, when calculating the convolution.

Figure 5 presents training and validation losses for our
five models. Same color lines correspond to the same model.
Solid and dashed lines represent training loss and validation
loss each. For all models, both training and validation losses
properly converged. Thus, our models are not overfitted on the
training data.

We also evaluated whether the median and the distribution
of DSC scores throughout the testing set differed significantly
between the five models evaluated. We conducted two tests:
(1) the Wilcoxon ranksum, as implemented by the function
ranksum in MATLAB, to evaluate whether the medians of
the DSC scores from each model across the testing dataset

were significantly different between each other; and (2) the
Kruskal-Wallis test, as implemented by the MATLAB function
kruskalwallis, to evaluate whether the distributions of
these DSC values were statistically significantly different between
the models. Neither the medians nor the DSC distributions
obtained by these five models significantly differed. The
result of the Kruskal-Wallis test is shown in Table 2. The
p-value obtained from the ANalysis Of VAriance (ANOVA)
of the DSC distributions from the five models across all
cases is 0.7786, indicating that the results of these five
models did not differ significantly from each other in
terms of the distribution of DSC across the testing set.
This emphasizes that Dilated Saliency U-Net model can
produce similar level of performance as the original U-Net
models even with less number of parameters and shorter
training time. Figure 6 also illustrates that the DSC scores
obtained from applying our models are similarly distributed to
each other.

Figure 7 visualizes the examples of WMH segmentation
results by our experimental models. In most cases, the use of
two data sources (i.e., IAM and T2-FLAIR images) in training the

FIGURE 4 | (A) Raw T2-FLAIR image, (B) T2-FLAIR input after preprocessing and normalization, (C) Ground truth data with three labels. Blue region is non-brain

area, green region is non-WMH brain tissues and red region is WMH.

FIGURE 5 | Loss graph of our five models. While solid lines indicate training loss, dashed lines represent validation loss.
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network complements each other’s effect detecting tricky WMH
regions. Depending on the contrast/size of WMH or the quality
of IAM, there are some cases in which WMH are distinguishable
on IAM but unclear in T2-FLAIR and vice versa. For example,
if WMH clusters are too small, it is hard to differentiate them
on T2-FLAIR, but they are better observable on IAM, where
WMH and normal brain tissue regions have better contrast. On

TABLE 2 | ANOVA table for our five models.

Source SS df MS F-value p-value

Models 3334.7 4 833.68 1.77 0.7786

SS refers to the sum of squares. df and MS mean degrees of freedom and mean squares,

respectively.

FIGURE 6 | Distributions of DSC score by our five models. “x” and bar at the

middle of box indicate mean and median each. Bottom and top of each box

mean the first and third quartile.

the other hand, in the presence of other irregular patterns such
as extremely low intensities of brain irregularities aroundWMH,
T2-FLAIR can indicate WMH clearly than IAM. In Figure 7A,
U-Net(FLAIR) produced better WMH segmentation result than
U-Net(IAM) due to the poor quality of IAM. Conversely, U-
Net(FLAIR) could not detect WMH well due to unclear intensity
contrast on T2-FLAIR while U-Net(IAM) could segment these
WMH regions as IAM enhanced them as anomalies (Figure 7B).
Furthermore, incorporating both T2-FLAIR and IAM together
as input data produced better WMH segmentation in general
(5–7th columns from left to right of Figure 7).

3.3. WMH Volume Analysis
In this experiment, we evaluate our models based on the WMH
volumes of the MRI scan (i.e., WMH burden) to examine
the influence of WMH burden on the performance of WMH
segmentation. The WMH volume of each MRI scan is calculated
by multiplying the number of WMH voxels by the voxel size.
We grouped MRI scans into three groups according to the range
of WMH volume. Table 3 shows the range of WMH volume
used as criteria for forming the groups, and the number of
scans included in each group. Figure 8A shows the lack of
ambiguity or overlap in the classification of the MRI scans in
each group.

Figure 8B plots the DSC scores yielded by the MRI scans
in the different WMH volume groups by our five experimental

TABLE 3 | Criteria sorting MRI scans according to WMH voxel volume.

Group Range of WMH volume (mm3) # Scans

Large 10, 000 ≤ WMH Vol 6

Medium 4, 000 ≤ WMH Vol < 10, 000 10

Small 1 ≤ WMH vol < 4, 000 14

“# Scans” means the number of included MRI scans. Most of scans are included in Small

and Medium groups.

FIGURE 7 | Examples of WMH segmentation results by our experimental models. Cyan circles indicate WMH detected only by one of the original U-Net models, i.e.,

U-Net(FLAIR) or U-Net(IAM). Row (A) shows a case where WMH is distinguishable exclusively in the T2-FLAIR image, while row (B) shows a case where IAM

highlights WMH clearly. By training networks using T2-FLAIR and IAM, both WMH regions are detected.
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models. Please, note that the DSC scores referred in this section
correspond to the evaluation of the WMH segmentation results
in each MRI scan, not per slice which are used for overall
performance evaluation in section 3.2Table 1. Hence scans of the
Large groupmight have several smallWMH rather than one large
region with confluent WMH.

All models tested in this study showed high median
values of DSC scores in the Medium group, for which
all models performed better than the other groups. In
the Large group, U-Net(FLAIR) and U-Net(F+I) models
performed similarly well, while U-Net(IAM) performed
worst compared with the rest of the models. Mean,
median and standard deviation (std.) values of DSC score
distribution in each group are shown in Table 4. Overall,
the performance of the models for scans with Small and
Medium WMH burden was quite similar (see also Figure 8B).
However, large variations in DSC scores were observed
among the scans of the Small group, especially for the
U-Net(FLAIR) model.

3.4. Longitudinal Evaluation
In the Longitudinal evaluation test we addressed the capacity
of our five models in predicting WMH in subsequent years
after being trained only using the first year samples. Hence, the
training set was formed by the first year samples while the testing
set was composed by the second and third year samples. Table 5
shows the mean DSC score for each sample. In this evaluation,
U-Net(IAM) and Saliency U-Net performed slightly better than
the other three models, partly owed to IAM which could provide
information to predict WMH occurrence. As expected, all our
models predicted better WMH in the second year than in the
third year.

3.5. U-Net vs. Saliency U-Net
In order to evaluate the effectiveness of the Saliency U-Net
architecture, we compared the original U-Net and Saliency U-
Net models trained with T2-FLAIR and IAM. As shown in
Table 1, Saliency U-Net yielded higher DSC score than U-
Net(F+I) despite U-Net(F+I) having higher sensitivity value.

FIGURE 8 | (A) Distributions of data (MRI scan) grouped together based on WMH volume. (B) DSC distributions yielded by tested five models based on WMH

volume. “x” and bar at the middle of box indicate mean and median each. Bottom and top of each box mean the first and third quartile.

TABLE 4 | Mean, median and standard deviation values of the distributions of DSC scores from our experimental models per WMH volume groups.

Model
DSC mean. DSC median. DSC std.

Large Medium Small Large Medium Small Large Medium Small

U-Net(FLAIR) 0.6184 0.6070 0.4147 0.6987 0.6499 0.4559 0.0524 0.1076 0.1746

U-Net(IAM) 0.5168 0.5817 0.4294 0.5036 0.6080 0.4106 0.0668 0.1111 0.1455

U-Net(F+I) 0.6124 0.6025 0.4580 0.6092 0.6276 0.4400 0.0548 0.0931 0.1460

Saliency U-Net(F+I) 0.5824 0.5812 0.4299 0.5853 0.6023 0.4134 0.0377 0.0956 0.1687

DSU-Net_1224 0.5722 0.5929 0.4003 0.5814 0.6286 0.3876 0.0592 0.0965 0.1733

DSU-Net_4221 0.5711 0.5768 0.4253 0.5776 0.6152 0.4250 0.0574 0.1097 0.1640

DSU-Net_1242 0.5882 0.5852 0.4407 0.5782 0.6320 0.4498 0.0536 0.1069 0.1558

Model name DSU-Net_abcd refers to Dilated Saliency U-Net model with dilation factors a, b, c, d in order from the first to the fourth convolution layers. These dilation factors are

applied on convolution layers in the encoding part (i.e., before concatenating T2-FLAIR and IAM feature maps) of the CONV blocks, which consists of convolution, ReLU, and

batch normalization layers. These different Dilated Saliency U-Net models are described in section 3.6. DSU-Net_1242 was used for the Dilated Saliency U-Net model evaluated

in section 3.3.
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Figure 9 shows that Saliency U-Net successfully eliminates some
of the false positives observed in the segmentation result from
U-Net(F+I).

We also investigated the change in Saliency U-Net’s
performance in relation to its complexity when the number
of convolution layers increased/decreased. DSC score, training
time and model complexity (i.e., the number of parameters) are
compared in Figure 10. The rule for changing the Saliency U-
Net complexity is to connect/disconnect the 2 CONV blocks that
are attached/detached at both ends, through a “skip" connection.
However, since the encoder part is a two-branch architecture, 6
CONV blocks are included at once increasing its complexity (i.e.,
4 CONV blocks are added to the encoder part and 2 CONV block
are added to the decoder part). Similar approach is done when
decreasing the complexity, where 4 CONV blocks and 2 CONV
blocks are dropped from the encoder and decoder, respectively.
For clarity, our original Saliency U-Net model (i.e., evaluated in
Table 1 of section 3.2) contains 14 CONVblocks and each CONV
block holds one convolution layer as shown in Figure 3.

As shown in Figure 10, adding more CONV blocks means
increasing both number of parameters and training time

TABLE 5 | DSC score for longitudinal evaluation of our five models.

Model 2nd year 3rd year

U-Net(FLAIR) 0.6136 0.5878

U-Net(IAM) 0.6270 0.6110

U-Net(F+I) 0.6229 0.5823

Saliency U-Net 0.6258 0.6119

Dilated Saliency U-Net 0.6060 0.5881

We evaluated these models using data from both second and third years. As per Table 1,

values in bold are the highest scores and in italics are the second highest ones.

significantly. Furthermore, using too many CONV blocks (i.e.,
Saliency U-Net with 26 CONV blocks) decreased the DSC score
due to overfitting.

3.6. Exploration of Dilated Saliency U-Net
Architecture
In this experiment, we applied different dilation factors in Dilated
Saliency U-Net, which captures multi-context information on
image slices without having to change the number of parameters.
As per Figure 9, which visually displays the segmentation results
from Saliency U-Net, the boundary delineation is still poor
for large WMH regions. Furthermore, we also can see in
the same Figure 9 that dilated convolutions help Saliency U-
Net to reproduce the shape of WMH regions in more detail.
Hence, it is important to know the influence of different
dilated convolution configurations in Dilated Saliency U-Net for
WMH segmentation.

In order to find the most appropriate dilation factors, we
compared different sequences of dilation factors. Figure 3C

shows the basic Dilated Saliency U-Net architecture used in this
experiment. Only four dilation factors in the encoding part were
altered while the rest of the parameters for the training schemes
stayed the same. Yu and Koltun suggested to use a fixed filter size
for all dilated convolution layers but exponential dilated factors
(e.g., 20, 21, 22 ...) (Yu and Koltun, 2015). Therefore, we assessed
“increasing”, “decreasing” and “increasing & decreasing” dilation
factor sequences with factor numbers of 1, 2, 2, 4 and fixed filter
size of 3 × 3. Details of these configurations are presented in
Table 6. From this table, we can appreciate that despite DSU-
Net_4221 performed best in DSC score (0.5622), it recorded the
lowest sensitivity score. The best sensitivity metric was produced
by DSU-Net_1242 (0.4747), but it did not outperform DSU-
Net_4221 in DSC score.

FIGURE 9 | Comparison of WMH segmentation results from U-Net(F+I), Saliency U-Net and Dilated Saliency U-Net. Yellow circles indicate false positive results by

U-Net(F+I). These false positive results are eliminated in the results from Saliency and Dilated Saliency U-Net. Green arrows are pointing to locations where boundaries

are segmented in more detail by Saliency and Dilated Saliency U-Net.
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FIGURE 10 | (Right) Trends of DSC score, training time and number of parameters of Saliency U-Net when more convolution layers are changed. It is also shown

Saliency U-Net with 26 CONV blocks performance in testing (upper Right) decreases although its training (Left) DSC score increase. This is caused by overfitting.

TABLE 6 | Encoder architecture of Dilated Saliency U-Net with different dilation

factors and their performances.

Model Encoder DSC Sensitivity

DSU-Net_1224 (Increasing) CONV 3× 3× 64, d = 1 0.5304 0.4395

CONV 3× 3× 64, d = 2

Max Pooling

CONV 3× 3× 128, d = 2

CONV 3× 3× 128, d = 4

Max Pooling

DSU-Net_4221 (Decreasing) CONV 3× 3× 64, d = 4 0.5622 0.4381

CONV 3× 3× 64, d = 2

Max Pooling

CONV 3× 3× 128, d = 2

CONV 3× 3× 128, d = 1

Max Pooling

DSU-Net_1242

(Increasing & decreasing)

CONV 3× 3× 64, d = 1 0.5588 0.4747

CONV 3× 3× 64, d = 2

Max Pooling

CONV 3× 3× 128, d = 4

CONV 3× 3× 128, d = 2

Max Pooling

Three numbers in the CONV block stans for “filter size× filter size× filter number” and “d”

means a dilation factor and its trend of dilation factor pattern is specified in the bracket.

Values in bold are the highest scores.

FIGURE 11 | DSC score of three different Dilated Saliency U-Net groups

based on WMH volume in MRI scans. The group information is described in

Table 3. “x” and bar at the middle of box indicate mean and median each.

Bottom and top of each box means the first and third quartile.

Additionally, we investigated the influence of dilation factors
in DSC score performance per WMH volume of MRI scans.
Evaluation was conducted on the three groups previously
described in Table 3. Figure 11 shows that DSU-Net_1242
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outperformed other models in every group. The report of mean,
median and standard deviation of DSC score distribution in each
group can be seen in Table 4.

4. DISCUSSION

In this study, we explored the use of IAM as an auxiliary data
to train deep neural networks for WMH segmentation. IAM
produces a probability map of each voxel to be considered
a textural irregularity compared to other voxels considered
“normal" (Rachmadi et al., 2019). While incorporating IAM
as an auxiliary input data, we compared three deep neural
network architectures to find the best architecture for the task,
namely U-Net, Saliency U-Net and Dilated Saliency U-Net. It
has been suggested that Saliency U-Net is adequate to learn
medical image segmentation task with both a raw image and a
pre-segmented regional map (Karargyros and Syeda-Mahmood,
2018). The original U-Net did not improve DSC score despite
using both T2-FLAIR and IAM as input, but the DSC score from
Saliency U-Net was superior to that from the original U-Net
trained only with T2-FLAIR. This is because Saliency U-Net is
able to learn the joint encoding of two different distributions:
i.e., from T2-FLAIR and IAM. Saliency U-Net generated better
results than U-Net despite having less parameters. We also found
that Saliency U-Net had lower false positive rate compared
to U-Net.

Dilated convolution can learn spatially multi-context by
expanding the receptive field without increasing the number
of parameters. We added dilation factors to the convolution
layers in the encoding block of Saliency U-Net to improve
WMH segmentation, especially due to the high variability in the
WMH size. This new model is named “Dilated Saliency U-Net.”
Dilated convolution improved both DSC score and sensitivity
with shorter training time. Dilated Saliency U-Net also yielded
more accurate results in the presence of large WMH volumes
and worked well in Medium and Small WMH volume MRI data
groups which are more challenging. We identified that dilated
convolution is effective when dilation factors are increased and
decreased sequentially.

To our knowledge, this is the first attempt of successfully
combining dilation, saliency and U-Net. We could reduce
the complexity of a deep neural network architecture while
increasing its performance through the integrated techniques and
the use of IAM. Due to the trade-off between performance and
training time, which is proportional to the model complexity,
it is crucial to develop less complex CNN architectures without
decreasing their performance.

Anomaly detection in the medical imaging field has been
broadly studied (Quellec et al., 2016; Schlegl et al., 2017). One
of its difficulties relies on the inconsistent shape and intensity
of these anomalies. IAM helped the CNN scheme to overcome

this problem by providing the localization and morphological
information of irregular regions. We believe it is possible to
generate IAM from different modalities of medical images. Thus,
the application of IAM is highly expandable to detect different
imaging bio-markers involving abnormal intensity values in
other diseases.
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